Nonmeasurability versus complete nonmeasurability

Szymon Żeberski Wrocław University of Technology

Winter School in Abstract Analysis, section Set Theory Hejnice 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathbb R$ - real line,

- ${\mathbb I}$ a $\sigma\text{-ideal}$ of subsets of ${\mathbb R}$
 - containing singletons, i.e. $[\mathbb{R}]^{\omega} \subseteq \mathbb{I}$,
 - ▶ with Borel base, i.e. $(\forall I \in \mathbb{I})(\exists B \in \text{Borel} \cap \mathbb{I})(I \subseteq B)$,

► translation invariant, i.e. $(\forall I \in \mathbb{I})(\forall x \in \mathbb{R})(x + I = \{x + i : i \in I\} \in \mathbb{I}).$

Definition Let $N \subseteq \mathbb{R}$. We say that the set N is

1. \mathbb{I} -nonmeasurable iff

$$N \notin \operatorname{Borel}[\mathbb{I}] = \{ B \bigtriangleup I : B \in \operatorname{Borel}, I \in \mathbb{I} \};$$

2. completely I-nonmeasurable iff

 $(\forall A \in \text{Borel} \setminus \mathbb{I})(A \cap N \notin \mathbb{I} \land A \cap (\mathbb{R} \setminus N) \notin \mathbb{I}).$

Remark $N \subseteq \mathbb{R}$ is completely \mathbb{I} -nonmeasurable iff

$$(\forall A \in \operatorname{Borel} \setminus \mathbb{I})(A \cap N \neq \emptyset \land A \cap (\mathbb{R} \setminus N) \neq \emptyset).$$

Remark

- *N* is completely \mathbb{L} -nonmeasurable if $\lambda_*(N) = 0$ and $\lambda_*(\mathbb{R} \setminus N) = 0$.
- ► The definition of completely K-nonmeasurability is equivalent to the definition of completely Baire-nonmeasurability.
- ▶ *N* is completely $[\mathbb{R}]^{\omega}$ -nonmeasurable iff *N* is a Bernstein set.

Question

Let $\mathcal{P} \subseteq \mathbb{I}$ be a partition of \mathbb{R} . Is it possible that

 $(\forall \mathcal{A} \subseteq \mathcal{P})(\bigcup \mathcal{A} \text{ is } \mathbb{I}\text{-nonmeasurable} \rightarrow$

 $\bigcup \mathcal{A}$ is completely \mathbb{I} -nonmeasurable)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Definition I has *Steinhaus property* if

 $(\forall A \in \operatorname{Borel} \setminus \mathbb{I})(\forall B \notin \mathbb{I})(A - B \text{ contains an open interval})$

where

$$A-B=\{a-b : a\in A, b\in B\}.$$

Assume I has Steinhaus property. Then there exists a partition $\mathcal{P} \subseteq I$ of \mathbb{R} such that for every $\mathcal{A} \subseteq \mathcal{P}$

 $\bigcup \mathcal{A} \text{ is } \mathbb{I}\text{-nonmeasurable} \rightarrow \bigcup \mathcal{A} \text{ is completely } \mathbb{I}\text{-nonmeasurable}.$

Assume I has Steinhaus property. Then there exists a partition $\mathcal{P} \subseteq I$ of \mathbb{R} such that for every $\mathcal{A} \subseteq \mathcal{P}$

 $\bigcup \mathcal{A} \text{ is } \mathbb{I}\text{-nonmeasurable} \rightarrow \bigcup \mathcal{A} \text{ is completely } \mathbb{I}\text{-nonmeasurable}.$

Proof. For $x, y \in \mathbb{R}$ let $x \approx y \leftrightarrow x - y \in \mathbb{Q}$. Let $\mathcal{P} = \mathbb{R} / \approx = \{ x_{\alpha} + \mathbb{Q} : \alpha \in 2^{\omega} \}.$

Assume I has Steinhaus property. Then there exists a partition $\mathcal{P} \subseteq I$ of \mathbb{R} such that for every $\mathcal{A} \subseteq \mathcal{P}$

 $\bigcup \mathcal{A} \text{ is } \mathbb{I}\text{-nonmeasurable} \rightarrow \bigcup \mathcal{A} \text{ is completely } \mathbb{I}\text{-nonmeasurable}.$

Proof.

For $x, y \in \mathbb{R}$ let $x \approx y \leftrightarrow x - y \in \mathbb{Q}$. Let $\mathcal{P} = \mathbb{R}/\approx = \{x_{\alpha} + \mathbb{Q} : \alpha \in 2^{\omega}\}.$ Take $\mathcal{A} \subseteq \mathcal{P}$ such that $|\mathcal{A}| > \omega$ and $|\mathcal{P} \setminus \mathcal{A}| > \omega$. Assume that \mathcal{A} is not completely I-nonmeasurable. Then $\bigcup \mathcal{A} \notin I$ and $\bigcup (\mathcal{P} \setminus \mathcal{A}) \notin I$ and at least one of this sets contains I-possitive Borel set. So $\bigcup \mathcal{A} - \bigcup (\mathcal{P} \setminus \mathcal{A})$ contains an open interval. $\bigcup \mathcal{A} - \bigcup (\mathcal{P} \setminus \mathcal{A}) = \{x_{\alpha} - x_{\beta} + \mathbb{Q} : x_{\alpha} + \mathbb{Q} \in \mathcal{A}, x_{\beta} + \mathbb{Q} \in \mathcal{P} \setminus \mathcal{A}\}.$ $\bigcup \mathcal{A} - \bigcup (\mathcal{P} \setminus \mathcal{A}) \cap \mathbb{Q} = \emptyset$. Contradiction.

Assume I has Steinhaus property. Then there exists a partition $\mathcal{P} \subseteq I$ of \mathbb{R} such that for every $\mathcal{A} \subseteq \mathcal{P}$

 $\bigcup \mathcal{A} \text{ is } \mathbb{I}\text{-nonmeasurable} \rightarrow \bigcup \mathcal{A} \text{ is completely } \mathbb{I}\text{-nonmeasurable}.$

Proof.

For $x, y \in \mathbb{R}$ let $x \approx y \leftrightarrow x - y \in \mathbb{Q}$. Let $\mathcal{P} = \mathbb{R} / \approx = \{x_{\alpha} + \mathbb{Q} : \alpha \in 2^{\omega}\}.$ Take $\mathcal{A} \subseteq \mathcal{P}$ such that $|\mathcal{A}| > \omega$ and $|\mathcal{P} \setminus \mathcal{A}| > \omega$. Assume that \mathcal{A} is not completely I-nonmeasurable. Then $\bigcup \mathcal{A} \notin \mathbb{I}$ and $\bigcup (\mathcal{P} \setminus \mathcal{A}) \notin \mathbb{I}$ and at least one of this sets contains I-possitive Borel set. So $\bigcup \mathcal{A} - \bigcup (\mathcal{P} \setminus \mathcal{A})$ contains an open interval. $\bigcup \mathcal{A} - \bigcup (\mathcal{P} \setminus \mathcal{A}) = \{x_{\alpha} - x_{\beta} + \mathbb{Q} : x_{\alpha} + \mathbb{Q} \in \mathcal{A}, x_{\beta} + \mathbb{Q} \in \mathcal{P} \setminus \mathcal{A}\}.$ $\bigcup \mathcal{A} - \bigcup (\mathcal{P} \setminus \mathcal{A}) \cap \mathbb{Q} = \emptyset$. Contradiction.

Assume I has Steinhaus property. Then there exists a partition $\mathcal{P} \subseteq I$ of \mathbb{R} such that for every $\mathcal{A} \subseteq \mathcal{P}$

 $\bigcup \mathcal{A} \text{ is } \mathbb{I}\text{-nonmeasurable} \rightarrow \bigcup \mathcal{A} \text{ is completely } \mathbb{I}\text{-nonmeasurable}.$

Proof.

For $x, y \in \mathbb{R}$ let $x \approx y \leftrightarrow x - y \in \mathbb{Q}$. Let $\mathcal{P} = \mathbb{R} / \approx = \{x_{\alpha} + \mathbb{Q} : \alpha \in 2^{\omega}\}.$ Take $\mathcal{A} \subseteq \mathcal{P}$ such that $|\mathcal{A}| > \omega$ and $|\mathcal{P} \setminus \mathcal{A}| > \omega$. Assume that \mathcal{A} is not completely I-nonmeasurable. Then $\bigcup \mathcal{A} \notin \mathbb{I}$ and $\bigcup (\mathcal{P} \setminus \mathcal{A}) \notin \mathbb{I}$ and at least one of this sets contains I-possitive Borel set. So $\bigcup \mathcal{A} - \bigcup (\mathcal{P} \setminus \mathcal{A})$ contains an open interval. $\bigcup \mathcal{A} - \bigcup (\mathcal{P} \setminus \mathcal{A}) = \{x_{\alpha} - x_{\beta} + \mathbb{Q} : x_{\alpha} + \mathbb{Q} \in \mathcal{A}, x_{\beta} + \mathbb{Q} \in \mathcal{P} \setminus \mathcal{A}\}.$ $\bigcup \mathcal{A} - \bigcup (\mathcal{P} \setminus \mathcal{A}) \cap \mathbb{Q} = \emptyset$. Contradiction.

Let $\mathcal{P} \subseteq [\mathbb{R}]^{<\omega}$ be a partition of \mathbb{R} . Then

1. there is $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is completely \mathbb{I} -nonmeasurable;

2. there is $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is \mathbb{I} -nonmeasurable but is not completely \mathbb{I} -nonmeasurable.

Proof.

1. Standard construction of Bernstein set.

2. Let
$$\mathcal{P} = \{Y_{\alpha} : \alpha \in 2^{\omega}\}, Y_{\alpha} = \{y_{0}^{\alpha}, y_{1}^{\alpha}, \dots, y_{n}^{\alpha}\}, y_{0}^{\alpha} < y_{1}^{\alpha} < \dots < y_{n}^{\alpha}.$$

Define $X_{k} = \{y_{k}^{\alpha} : \alpha \in 2^{\omega}\}.$ Wlog $X_{0} \notin \mathbb{I}.$
We can find $r \in \mathbb{R}$ such that $X_{0} \cap (-\infty, r) \notin \mathbb{I}$ and
 $X_{0} \cap (r, +\infty) \notin \mathbb{I}.$
Put $\mathcal{P}' = \{Y_{\alpha} : y_{0}^{\alpha} > r\} \subseteq \mathcal{P}.$
 $\bigcup \mathcal{P}' \subseteq (r, +\infty)$ and $\bigcup \mathcal{P}' \notin \mathbb{I}.$
Find $\mathcal{A} \subseteq \mathcal{P}'$ such that $\bigcup \mathcal{A}$ is \mathbb{I} -nonmeasurable. $\bigcup \mathcal{A}$ is not
completely \mathbb{I} -nonmeasurable.

Let $\mathcal{P} \subseteq [\mathbb{R}]^{<\omega}$ be a partition of \mathbb{R} . Then

- 1. there is $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is completely \mathbb{I} -nonmeasurable;
- there is A ⊆ P such that UA is I-nonmeasurable but is not completely I-nonmeasurable.

Proof.

1. Standard construction of Bernstein set.

2. Let $\mathcal{P} = \{Y_{\alpha} : \alpha \in 2^{\omega}\}, Y_{\alpha} = \{y_{0}^{\alpha}, y_{1}^{\alpha}, \dots, y_{n}^{\alpha}\}, y_{0}^{\alpha} < y_{1}^{\alpha} < \dots < y_{n}^{\alpha}.$ Define $X_{k} = \{y_{k}^{\alpha} : \alpha \in 2^{\omega}\}.$ Wlog $X_{0} \notin \mathbb{I}.$ We can find $r \in \mathbb{R}$ such that $X_{0} \cap (-\infty, r) \notin \mathbb{I}$ and $X_{0} \cap (r, +\infty) \notin \mathbb{I}.$ Put $\mathcal{P}' = \{Y_{\alpha} : y_{0}^{\alpha} > r\} \subseteq \mathcal{P}.$ $\bigcup \mathcal{P}' \subseteq (r, +\infty)$ and $\bigcup \mathcal{P}' \notin \mathbb{I}.$ Find $\mathcal{A} \subseteq \mathcal{P}'$ such that $\bigcup \mathcal{A}$ is \mathbb{I} -nonmeasurable. $\bigcup \mathcal{A}$ is not completely \mathbb{I} -nonmeasurable.

Let $\mathcal{P} \subseteq [\mathbb{R}]^{<\omega}$ be a partition of \mathbb{R} . Then

- 1. there is $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is completely \mathbb{I} -nonmeasurable;
- there is A ⊆ P such that UA is I-nonmeasurable but is not completely I-nonmeasurable.

Proof.

- 1. Standard construction of Bernstein set.
- 2. Let $\mathcal{P} = \{Y_{\alpha} : \alpha \in 2^{\omega}\}, Y_{\alpha} = \{y_{0}^{\alpha}, y_{1}^{\alpha}, \dots, y_{n}^{\alpha}\}, y_{0}^{\alpha} < y_{1}^{\alpha} < \dots < y_{n}^{\alpha}.$ Define $X_{k} = \{y_{k}^{\alpha} : \alpha \in 2^{\omega}\}.$ Wlog $X_{0} \notin \mathbb{I}.$ We can find $r \in \mathbb{R}$ such that $X_{0} \cap (-\infty, r) \notin \mathbb{I}$ and $X_{0} \cap (r, +\infty) \notin \mathbb{I}.$ Put $\mathcal{P}' = \{Y_{\alpha} : y_{0}^{\alpha} > r\} \subseteq \mathcal{P}.$ $\bigcup \mathcal{P}' \subseteq (r, +\infty)$ and $\bigcup \mathcal{P}' \notin \mathbb{I}.$ Find $\mathcal{A} \subseteq \mathcal{P}'$ such that $\bigcup \mathcal{A}$ is \mathbb{I} -nonmeasurable. $\bigcup \mathcal{A}$ is not completely \mathbb{I} -nonmeasurable.

Let $\mathcal{P} \subseteq [\mathbb{R}]^{<\omega}$ be a partition of \mathbb{R} . Then

- 1. there is $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is completely \mathbb{I} -nonmeasurable;
- 2. there is $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is \mathbb{I} -nonmeasurable but is not completely \mathbb{I} -nonmeasurable.

Proof.

1. Standard construction of Bernstein set.

2. Let
$$\mathcal{P} = \{Y_{\alpha} : \alpha \in 2^{\omega}\}, Y_{\alpha} = \{y_{0}^{\alpha}, y_{1}^{\alpha}, \dots, y_{n}^{\alpha}\}, y_{0}^{\alpha} < y_{1}^{\alpha} < \dots < y_{n}^{\alpha}.$$

Define $X_{k} = \{y_{k}^{\alpha} : \alpha \in 2^{\omega}\}.$ Wlog $X_{0} \notin \mathbb{I}.$
We can find $r \in \mathbb{R}$ such that $X_{0} \cap (-\infty, r) \notin \mathbb{I}$ and
 $X_{0} \cap (r, +\infty) \notin \mathbb{I}.$
Put $\mathcal{P}' = \{Y_{\alpha} : y_{0}^{\alpha} > r\} \subseteq \mathcal{P}.$
 $\bigcup \mathcal{P}' \subseteq (r, +\infty)$ and $\bigcup \mathcal{P}' \notin \mathbb{I}.$
Find $\mathcal{A} \subseteq \mathcal{P}'$ such that $\bigcup \mathcal{A}$ is \mathbb{I} -nonmeasurable. $\bigcup \mathcal{A}$ is not
completely \mathbb{I} -nonmeasurable.

Let $\mathcal{P} \subseteq [\mathbb{R}]^{<\omega}$ be a partition of \mathbb{R} . Then

- 1. there is $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is completely \mathbb{I} -nonmeasurable;
- 2. there is $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is \mathbb{I} -nonmeasurable but is not completely \mathbb{I} -nonmeasurable.

Proof.

1. Standard construction of Bernstein set.

2. Let
$$\mathcal{P} = \{Y_{\alpha} : \alpha \in 2^{\omega}\}, Y_{\alpha} = \{y_{0}^{\alpha}, y_{1}^{\alpha}, \dots, y_{n}^{\alpha}\}, y_{0}^{\alpha} < y_{1}^{\alpha} < \dots < y_{n}^{\alpha}.$$

Define $X_{k} = \{y_{k}^{\alpha} : \alpha \in 2^{\omega}\}.$ Wlog $X_{0} \notin \mathbb{I}.$
We can find $r \in \mathbb{R}$ such that $X_{0} \cap (-\infty, r) \notin \mathbb{I}$ and
 $X_{0} \cap (r, +\infty) \notin \mathbb{I}.$
Put $\mathcal{P}' = \{Y_{\alpha} : y_{0}^{\alpha} > r\} \subseteq \mathcal{P}.$
 $\bigcup \mathcal{P}' \subseteq (r, +\infty)$ and $\bigcup \mathcal{P}' \notin \mathbb{I}.$
Find $\mathcal{A} \subseteq \mathcal{P}'$ such that $\bigcup \mathcal{A}$ is \mathbb{I} -nonmeasurable. $\bigcup \mathcal{A}$ is not
completely \mathbb{I} -nonmeasurable.

Let $\mathcal{P} \subseteq [\mathbb{R}]^{<\omega}$ be a partition of \mathbb{R} . Then

- 1. there is $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is completely \mathbb{I} -nonmeasurable;
- there is A ⊆ P such that UA is I-nonmeasurable but is not completely I-nonmeasurable.

Proof.

1. Standard construction of Bernstein set.

2. Let
$$\mathcal{P} = \{Y_{\alpha} : \alpha \in 2^{\omega}\}, Y_{\alpha} = \{y_{0}^{\alpha}, y_{1}^{\alpha}, \dots, y_{n}^{\alpha}\}, y_{0}^{\alpha} < y_{1}^{\alpha} < \dots < y_{n}^{\alpha}.$$

Define $X_{k} = \{y_{k}^{\alpha} : \alpha \in 2^{\omega}\}.$ Wlog $X_{0} \notin \mathbb{I}.$
We can find $r \in \mathbb{R}$ such that $X_{0} \cap (-\infty, r) \notin \mathbb{I}$ and
 $X_{0} \cap (r, +\infty) \notin \mathbb{I}.$
Put $\mathcal{P}' = \{Y_{\alpha} : y_{0}^{\alpha} > r\} \subseteq \mathcal{P}.$
 $\bigcup \mathcal{P}' \subseteq (r, +\infty)$ and $\bigcup \mathcal{P}' \notin \mathbb{I}.$
Find $\mathcal{A} \subseteq \mathcal{P}'$ such that $\bigcup \mathcal{A}$ is \mathbb{I} -nonmeasurable. $\bigcup \mathcal{A}$ is not
completely \mathbb{I} -nonmeasurable.

Assume that $\mathcal{P} \subseteq [\mathbb{R}]^{\omega}$ is a partition of \mathbb{R} . Then we can find $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is completely $[\mathbb{R}]^{\omega}$ -nonmeasurable.

Proof.

Standard construction of Bernstein set.

Assume that $\mathcal{P} \subseteq [\mathbb{R}]^{\omega}$ is a partition of \mathbb{R} . Then we can find $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is completely $[\mathbb{R}]^{\omega}$ -nonmeasurable.

Proof.

Standard construction of Bernstein set.

Theorem $(\neg CH)$

Assume that $\mathcal{P} \subseteq [\mathbb{R}]^{\omega}$ is a partition of \mathbb{R} . Then we can find $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is $[\mathbb{R}]^{\omega}$ -nonmeasurable but is not completely $[\mathbb{R}]^{\omega}$ -nonmeasurable.

Proof. Take $\mathcal{A} \subseteq \mathcal{P}$ such that $|\mathcal{A}| = \omega_1$. $|\bigcup \mathcal{A}| = \omega_1 < 2^{\omega}$. So, $\bigcup \mathcal{A}$ is $[\mathbb{R}]^{\omega}$ -nonmeasurable. Fix $\{Q_{\alpha} : \alpha \in 2^{\omega}\}$ a family of pairwise disjoint perfect sets. There exists α such that $Q_{\alpha} \cap \bigcup \mathcal{A} = \emptyset$. So, $\bigcup \mathcal{A}$ is not completely $[\mathbb{R}]^{\omega}$ -nonmeasurable.

Theorem $(\neg CH)$

Assume that $\mathcal{P} \subseteq [\mathbb{R}]^{\omega}$ is a partition of \mathbb{R} . Then we can find $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is $[\mathbb{R}]^{\omega}$ -nonmeasurable but is not completely $[\mathbb{R}]^{\omega}$ -nonmeasurable.

Proof. Take $\mathcal{A} \subseteq \mathcal{P}$ such that $|\mathcal{A}| = \omega_1$. $|\bigcup \mathcal{A}| = \omega_1 < 2^{\omega}$. So, $\bigcup \mathcal{A}$ is $[\mathbb{R}]^{\omega}$ -nonmeasurable. Fix $\{Q_{\alpha} : \alpha \in 2^{\omega}\}$ a family of pairwise disjoint perfect sets. There exists α such that $Q_{\alpha} \cap \bigcup \mathcal{A} = \emptyset$. So, $\bigcup \mathcal{A}$ is not completely $[\mathbb{R}]^{\omega}$ -nonmeasurable.

Theorem $(\neg CH)$

Assume that $\mathcal{P} \subseteq [\mathbb{R}]^{\omega}$ is a partition of \mathbb{R} . Then we can find $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is $[\mathbb{R}]^{\omega}$ -nonmeasurable but is not completely $[\mathbb{R}]^{\omega}$ -nonmeasurable.

Proof. Take $\mathcal{A} \subseteq \mathcal{P}$ such that $|\mathcal{A}| = \omega_1$. $|\bigcup \mathcal{A}| = \omega_1 < 2^{\omega}$. So, $\bigcup \mathcal{A}$ is $[\mathbb{R}]^{\omega}$ -nonmeasurable. Fix $\{Q_{\alpha} : \alpha \in 2^{\omega}\}$ a family of pairwise disjoint perfect sets. There exists α such that $Q_{\alpha} \cap \bigcup \mathcal{A} = \emptyset$. So, $\bigcup \mathcal{A}$ is not completely $[\mathbb{R}]^{\omega}$ -nonmeasurable.

Proof.

Let $\{Q_{\alpha} : \alpha \in \omega_1\}$ be an enumeration of all perfect subsets of \mathbb{R} . We can construct a partition $\mathcal{P} = \{X_{\alpha} : \alpha \in \omega_1\} \subseteq [\mathbb{R}]^{\omega}$ in such a way that

 $X_{\alpha} \cap Q_{\beta} \neq \emptyset$ for every $\beta < \alpha$.

Now, take $\mathcal{A} \subseteq \mathcal{P}$ such that $|\mathcal{A}| = |\mathcal{P} \setminus \mathcal{A}| = \omega_1$. Then

 $\bigcup \mathcal{A} \cap \mathcal{Q}_{\alpha} \neq \emptyset \text{ and } \bigcup (\mathcal{P} \setminus \mathcal{A}) \cap \mathcal{Q}_{\alpha} \neq \emptyset \text{ for every } \alpha < \omega.$

Proof.

Let $\{Q_{\alpha} : \alpha \in \omega_1\}$ be an enumeration of all perfect subsets of \mathbb{R} . We can construct a partition $\mathcal{P} = \{X_{\alpha} : \alpha \in \omega_1\} \subseteq [\mathbb{R}]^{\omega}$ in such a way that

 $X_{\alpha} \cap Q_{\beta} \neq \emptyset$ for every $\beta < \alpha$.

Now, take $\mathcal{A} \subseteq \mathcal{P}$ such that $|\mathcal{A}| = |\mathcal{P} \setminus \mathcal{A}| = \omega_1$. Then

 $\bigcup \mathcal{A} \cap \mathcal{Q}_{\alpha} \neq \emptyset \text{ and } \bigcup (\mathcal{P} \setminus \mathcal{A}) \cap \mathcal{Q}_{\alpha} \neq \emptyset \text{ for every } \alpha < \omega.$

Proof.

Let $\{Q_{\alpha} : \alpha \in \omega_1\}$ be an enumeration of all perfect subsets of \mathbb{R} . We can construct a partition $\mathcal{P} = \{X_{\alpha} : \alpha \in \omega_1\} \subseteq [\mathbb{R}]^{\omega}$ in such a way that

 $X_{\alpha} \cap Q_{\beta} \neq \emptyset$ for every $\beta < \alpha$.

Now, take $\mathcal{A} \subseteq \mathcal{P}$ such that $|\mathcal{A}| = |\mathcal{P} \setminus \mathcal{A}| = \omega_1$. Then

 $\bigcup \mathcal{A} \cap \mathcal{Q}_{\alpha} \neq \emptyset \text{ and } \bigcup (\mathcal{P} \setminus \mathcal{A}) \cap \mathcal{Q}_{\alpha} \neq \emptyset \text{ for every } \alpha < \omega.$

Proof.

Let $\{Q_{\alpha} : \alpha \in \omega_1\}$ be an enumeration of all perfect subsets of \mathbb{R} . We can construct a partition $\mathcal{P} = \{X_{\alpha} : \alpha \in \omega_1\} \subseteq [\mathbb{R}]^{\omega}$ in such a way that

 $X_{\alpha} \cap Q_{\beta} \neq \emptyset$ for every $\beta < \alpha$.

Now, take $\mathcal{A} \subseteq \mathcal{P}$ such that $|\mathcal{A}| = |\mathcal{P} \setminus \mathcal{A}| = \omega_1$. Then

 $\bigcup \mathcal{A} \cap \mathcal{Q}_{\alpha} \neq \emptyset \text{ and } \bigcup (\mathcal{P} \setminus \mathcal{A}) \cap \mathcal{Q}_{\alpha} \neq \emptyset \text{ for every } \alpha < \omega.$

Corollary

TFAE:

1. CH,

2. there is $\mathcal{P} \subseteq [\mathbb{R}]^{\omega}$ a partition of \mathbb{R} such that for any $\mathcal{A} \subseteq \mathcal{P}$

 $\int \mathcal{A} \text{ is } [\mathbb{R}]^{\omega} \text{-nonmeasurable}$

 $\label{eq:lambda}$

Thank You for Your Attention

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- J. BRZUCHOWSKI, J. CICHOŃ, E. GRZEGOREK, C. RYLL-NARDZEWSKI, On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 1979, 27, 447-448
- J. CICHOŃ, M. MORAYNE, R. RAŁOWSKI, C. RYLL-NARDZEWSKI, S. ŻEBERSKI, *On nonmeasurable unions*, Topology and its Applications 154 (2007), 884-893
- T. JECH, Set Theory, 3. milenium ed., Springer-Verlag, 2003
- S. ŻEBERSKI, On completely nonmeasurable unions, Math. Log. Quart., 2007, 53(1), 38-42